
UP JORS software Latex paper template version 0.1

Software paper for submission to the Journal of Open Research Software

(1) Overview

Title
Magpy: A C++ accelerated Python package for simulating magnetic nanoparticle
stochastic dynamics

Paper Authors
1. Laslett, Oliver
2. Waters, Jonathon
3. Fangohr, Hans
4. Hovorka, Ondrej

Paper Author Roles and Affiliations
1. Engineering and the Environment, University of Southampton, Southampton, SO17
1BJ, UK.
2. Engineering and the Environment, University of Southampton, Southampton, SO17
1BJ, UK.
3. Engineering and the Environment, University of Southampton, Southampton, SO17
1BJ, UK. European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
4. Engineering and the Environment, University of Southampton, Southampton, SO17
1BJ, UK.

Abstract
Magpy is a C++ accelerated Python package for modelling and simulating the mag-
netic dynamics of nano-sized particles. Nanoparticles are modelled as a system of
three-dimensional macrospins and simulated with a set of coupled stochastic differ-
ential equations (the Landau-Lifshitz-Gilbert equation), which are solved numerically
using explicit or implicit methods. The results of the simulations may be used to com-
pute equilibrium states, the dynamic response to external magnetic fields, and heat
dissipation. Magpy is built on a C++ library, which is optimised for serial execution,
and exposed through a Python interface utilising an embarrassingly parallel strategy.
Magpy is free, open-source, and available on github under the 3-Clause BSD License.

Keywords
magnetism; macrospin; nanoparticles; physics; biomedicine; nanomedicine; stochastic;
dynamics; numerical methods; Python; C++

ar
X

iv
:1

80
1.

06
07

3v
2

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
3

Ja
n

20
18

UP JORS software Latex paper template version 0.1

Introduction
Magpy is an open-source C++ and Python package that models nanoparticles and
simulates their magnetic state over time. The magnetic dynamics of atoms within
materials are described by the Landau-Lifshitz-Gilbert (LLG) equation [1], which is a
nonlinear stochastic differential equation (SDE). The best choice of numerical method
to solve the LLG dynamics is an open research question. Therefore, the numerical
solvers in Magpy are implemented in a generic form, independent from the equations
of magnetism, which allows the methods to be tuned or replaced easily. The current im-
plementation includes the widely used Heun scheme [2] and the first open-source imple-
mentation of the Milstein derivative-free fully implicit scheme [3]. Magpy also includes
a rare-events model, valid under additional simplifying assumptions (detailed below),
which avoids solving the LLG equation and consequently simulates single nanoparticles
with significantly less computational effort.
The dynamics of magnetic nanoparticles play a crucial role in a number of emerging
medical technologies. For example, magnetic particles have been used to enhance
MRI images [4], deliver drugs inside the body [5], and destroy tumours by means
of heat destruction [6]. The particles that enable these technologies are simulated
computationally to augment traditional experiments and explore the effects of changing
material properties. Although Magpy was designed with medical applications in mind,
the software may be used to explain or predict the outcome of magnetic nanoparticle
experiments in general.
A model for magnetic nanoparticle dynamics
Figure 1 shows a diagram of a magnetic nanoparticle, which comprises a large number
of individual atoms arranged in a regular crystal lattice, each of which possesses a
magnetic moment represented by a 3-dimensional vector. The net magnetisation of
a material is simply the sum of the individual magnetic moments. For example, if
the atoms are randomly oriented, the material has zero magnetisation; if they are all
aligned, the material has a large magnetisation component. Atomic magnetic moments
prefer to align with one another due to an exchange interaction force. This force is
strong enough that, in nanoparticles that are particularly small (< 25nm in diameter),
the individual moments are approximately aligned and rotate coherently. Magpy uses
this approximation to model the state of a particles’ atoms by a single 3-dimensional
vector termed a macrospin, rather than simulate each atom individually. Magpy is
able to simulate much longer timescales for the same computational effort compared
to simulating the individual atoms due the greatly reduced degrees of freedom.
The dynamics of a macrospin are described by the Landau-Lifshitz-Gilbert equation
(LLG). For a detailed explanation of the origins and derivation of the LLG see [1]. The
LLG is implemented in Magpy in a normalised form by replacing time with a reduced
time variable ` (defined below), which ensures that the variables in the equation are
around an order of magnitude of unity:

dmk

d`
= − (mk × (hk + ξk))− αmk × (mk × (hk + ξk)) (1)

UP JORS software Latex paper template version 0.1

Macrospin
vector

Nanoparticle

~
5

-2
5

n
m

Atomistic magnetic
moments

~0.2
nm

Figure 1: A two-dimensional sketch of a nanoparticle. The atoms of a magnetic mate-
rial are packed into a regular crystal lattice and each is modelled by a three-dimensional
magnetic moment that varies with time. Due to strong interactions between these
magnetic moments in small particles, Magpy assumes they rotate coherently and are
represented by a single macrospin vector.

UP JORS software Latex paper template version 0.1

where mk ∈ R3 is the unit vector of the kth particle macrospin, α is a damping
constant, ξk ∈ R3 is a random term that models the thermal fluctuations experienced
by the particle, and hk is the effective magnetic field experienced by the particle.
The effective field hi comprises three different components [7], which are depicted in
Figure 2 and given mathematically as:

hi =− ki (mi · ki) ki − happ

−
∑
j 6=i

µ0M
2
s

2K̄

vj

4π |rij|3
(3 (mj · rij) rij −mj)

(2)

The first term describes preferential alignment of m with the particle’s anisotropy
axis, which acts in the unit direction ki ∈ R3 with magnitude ki (units Jm−3). The
second term describes the effect of an externally applied field happ ∈ R3. The final
term describes the field experienced by particle i through a long-range dipole-dipole
interaction with a nearby particle j, where Vj is the volume (units m3) of particle j and

vj = Vj/V̄ is the reduced volume; V̄ = 1/N
∑N

n=0 Vn is the mean volume of all particles

in the system; K̄ = 1/N
∑N

n=0 kn is the mean anisotropy magnitude; µ0 = 4π× 10−7 is
a constant (units mkgs−2A−2); Ms is the magnitude of the macrospin (the saturation
magnetisation, units Am−1) and rij ∈ R3 and rij are the unit vector and magnitude
respectively of the reduced distance between particles i and j. The reduced distance
is the true distance (units m) divided by

3
√
V̄ and appears in equation (2) because the

numerator and denominator of the interaction term are divided by V̄ , which has the
effect of scaling both values close to unity. The prefactor µ0M

2
s /
(
2K̄
)

can be computed
in advance and will also evaluate close to unity.
The reduced simulation time is related to real time through:

` = t
2γK̄

Ms(1 + α2)
(3)

where γ = 1.76086 × 1011 is a constant (units rads−1T−1). The fluctuating thermal
field is a vector of independent and identically normally distributed random variables
(ξik(`) is the ith component of the thermal field acting on macrospin k at time `) such
that the covariance between two components is [2]:

〈
ξik (`) ξjk (`′)

〉
= δijδ (`− `′)

√
αkBT

K̄Vk(1 + α2)
(4)

where δij and δ(`− `′) are the Kronecker delta and Dirac delta functions respectively,
kB is the Boltzmann constant (units m2kgs−2K−1) and T is the temperature (units K).
Equations (1)-(4) describe the Magpy model of a system of magnetic nanoparticles.
The equations are solved numerically at discrete time steps, resulting in a simulated
trajectory of the system’s magnetic state. The simulation outputs, at each discrete
time, the value of the applied magnetic field and the x, y, z components of the magnetic

UP JORS software Latex paper template version 0.1

1 2 3

Figure 2: The three effective field contributions acting upon macrospin i. (1) The
macrospin experiences a force towards alignment with the particle anisotropy axis
(dashed line) ki in either direction. (2) The macrospin is also forced towards align-
ing with the externally applied field direction (solid arrows) happ. (3) Finally, each
macrospin is repelled and attracted by nearby macrospins. The force of the dipole-
dipole interaction diminishes with distance (dash-dotted line) between two particles
Rij.

UP JORS software Latex paper template version 0.1

Aligned along
anisotropy axes

Applied field
direction

0 2 4 6 8 10
Time (ns)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

U
ni

t m
ag

ne
tis

at
io

n
Figure 3: Simulating a chain of three particles (created in Magpy using Listing 1).
(left) A chain structure of three identical particles are initialised with an external field
applied along their anisotropy axis and their magnetisation initially against the applied
field. (right) The coloured lines show the total magnetisation in the direction of the
applied field for 5 simulations from the same initial condition (see left). The black
line is the result of averaging 500 simulations from the same initial condition (i.e. the
expected or mean trajectory).

state of every particle in the system. These results may be used to obtain the total
magnetisation of the system M(t) = Ms

∑
imi(t), the average magnetisation of an

ensemble of systems, static and dynamic hysteresis loops, and the energy dissipated by
the system.
Multiple simulations with different random seeds but with identical initial conditions
will result in different solutions due to the stochastic nature of the thermal field. For
example Figure 3, shows the results of five simulations of a 3-particle chain from the
same initial condition. The Magpy script used to generate the results is shown in
Listing 1. In addition to individual trajectories, the expected system trajectory and
higher order statistical moments may be obtained by sampling a multitude of individual
simulations (the Monte-Carlo technique). The number of simulations required to obtain
reasonable estimates of these statistical variables is large and depends on the system
of interest.
Simulating rare-events for single particles
Magpy provides an alternative, simpler model for simulating non-interacting, anisotropy-
dominated particles. A particle is considered anisotropy-dominated if the effective field
resulting from anisotropy k is much greater than the thermal fluctuations and the ex-
ternally applied field such that σ(1− h)2 � 1 (where σ = KV/(kBT) is termed the
reduced energy barrier height). In these particles, the macrospin remains aligned with
one direction of the anisotropy axis and exhibits long periods of negligibly small fluc-
tuations around the axis separated by rare-events in which the macrospin reverses

UP JORS software Latex paper template version 0.1

Particle DOWN stateParticle UP state

Anisotropy
axis

Magnetic
moment

0 250 500 750 1000 1250 1500 1750 2000
Time (ns)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Un
it

m
ag

ne
tis

at
io

n

H=10000 Am 1

H=0 Am 1

H=-10000 Am 1

Figure 4: In the rare-events model, a single nanoparticle may occupy one of only
two states: up or down, which each correspond to local energy minima around the
anisotropy axis (left). The dynamics of the system are described by a master equation
with transition rates wu→d/d→u between the two states. The solution of the master
equation depends on the initial condition, particle properties and applied field. In this
example (right) the particle is initialised up with probability 1 and allowed to relax into
equilibrium (see Listing 2 for Magpy script). The equilibrium magnetisation depends
upon the strength of the constant applied magnetic field.

UP JORS software Latex paper template version 0.1

direction. Magpy approximates these dynamics as a jump process between two dis-
crete states (up and down), which is described mathematically by the master equation:

d

dt

[
pu(t)
pd(t)

]
=

[
−wu→d(t) wd→u(t)
wu→d(t) −wd→u(t)

][
pu(t)
pd(t)

]
(5)

where the elements of p(t) =
[
pu(t), pd(t)

]T
are the probability that the system is in

the up and down state respectively and wu→d(t), wd→u(t) are the transition rates (units
s−1) between the two states. Note that the solution of the master equation is the
time-evolution of the probability mass function over the discrete state space, whereas
the solution of the Landau-Lifshitz-Gilbert equation is the time-evolution of a single
random trajectory through the state-space R3.
The transition rates are computed in Magpy from the Néel-Brown model, which as-
sumes that the field is applied parallel to the anisotropy axis direction [8]:

wu→d/d→u(t) =
2γαkBTσ

1.5(1− h2(t))
VMs

√
π(1 + α2)

(1± h(t))e−σ(1±h(t))
2

(6)

where h(t) is the reduced applied field magnitude at time t along the anisotropy
direction. Equations (5) and (6) are solved numerically from an initial condition

p(t0) =
[
pu(t0), pd(t0)

]T
at time t0 using an adaptive step Runge-Kutta solver (RK45)

with Cash-Karp parameters [9]. The total magnetisation at time t for a large ensemble
of particles is computed as M(t) = Ms[pu(t)− pd(t)].
Figure 4 shows an example of a single particle simulated using the Magpy script in
Listing 2, with a constant field applied along its anisotropy axis. The initial condition

of the system is p(t0) =
[
1, 0
]T

and the master equation is solved numerically. As time
evolves, the probability that the particle flips into the down state pd(t) increases and
the expected magnetisation reduces. Eventually, the system reaches an equilibrium: in
zero field the two states are equally likely and the system has zero magnetisation; for
finite applied fields the system favours one state over the other.
Alternative software
Vinamax[10], implemented in Golang1 and also motivated by the medical applications
of nanoparticles, provides similar functionality to Magpy. A distinguishing feature of
Vinamax is its use of a multipole-expansion algorithm, which greatly improves the
speed of computing the dipole-dipole interaction forces for large systems. Magpy com-
putes the interaction field between every pair of particles (equation (2)), an operation
with complexity O(n2); the multipole expansion method uses an approximation, which
results in complexity O(n log n). Vinamax implements a broad range of solvers for the
LLG dynamics but currently does not include the fully implicit method.
The purpose of Magpy is not to simulate magnetic systems for which the macrospin
assumption is not justified, such as for larger particles that exhibit more than a sin-
gle domain or systems for which surface-to-surface atomistic interactions are signifi-
cant. In these cases, the magnetic moments of the individual atoms must be modelled.

1https://golang.org/doc for more information on the Go programming language.

UP JORS software Latex paper template version 0.1

Vampire [11] is an open-source C++ alternative to Magpy for atomistic simulation.
Vampire reduces the significant additional computational effort required for simulating
individual atoms by leveraging general purpose graphical processing units (GPGPUs).
Alternatively, if the effects of temperature can be ignored and the atomistic magnetic
moments are closely aligned, the magnetisation of material can be represented as a
continuous function resulting in a spatial-temporal partial differential equation. This
technique, termed micromagnetics, is implemented in a range of popular open-source
packages: MuMax3 [12], OOMMF [13], fidimag [14], nmag [15].
As discussed, Magpy includes implementations for several numerical methods to com-
pute approximate solutions to stochastic differential equations. Currently, the authors
are not aware of a reliable alternative in C++ or Python for the fully implicit method
[3]. Though there are mature packages for the solution of ordinary differential equa-
tions (e.g. sundials [16]) there are few options for stochastic differential equations. The
most mature, SDElab [17] implemented in Matlab, is no longer under development and
requires proprietary software. A re-implementation of SDElab using the open-source
julia language is currently under development2.

Implementation and architecture
Magpy consists of two components. Firstly, a C++ library implements the core simula-
tion code, which comprises the nanoparticle model and numerical solvers. The second
component is a Python interface to the C++ library functionality with additional
features for setting up simulations and analysing their results.
The dynamics (Landau-Lifshitz-Gilbert equation), rare-events model, numerical meth-
ods, and the effective field calculations are implemented in a C++ library. C++ was
the preferred programming language for implementing the computationally-intensive
simulation because of its relatively fast performance and opportunities for optimisa-
tion. The Magpy C++ library is optimised for serial execution; uses the BLAS and
LAPACK libraries; manages memory manually to minimise allocations and deallo-
cations; and may be compiled with proprietary Intel compilers for enhanced perfor-
mance on Intel architectures. Furthermore, the C++-11 standard contains features
that support a functional programming paradigm (such as closures and partial appli-
cation), which were used extensively in Magpy to improve testability and modularity
of code. The entry point to the Magpy library is through two top-level functions:
simulation::full_dynamics for the full model and simulation::dom_ensemble_dynamics

for the rare-events model. Magpy does not provide a graphical user interface, simula-
tions must be invoked by the user in a C++ program or using the alternative Python
interface.
It was the authors’ opinion that scripting in C++ was not sufficiently usable because
of the low-level syntax and the requirement for compiling scripts, which adds com-
plexity for users. Python, on the other hand, is high-level, interpreted, and has been
gaining popularity in the computational science community for the design of user in-
terfaces [18, 19, 20] and as an easy-to-learn tool [21]. Therefore, Python was chosen

2https://github.com/tonyshardlow/SDELAB2 for development updates on SDELab2.

UP JORS software Latex paper template version 0.1

Main python
process

Child python
process

Child python
process

Child python
process

C++ library

C++ library

C++ library

Child python
process

Child python
process

Child python
process

Main python
process

Parameters

Parameters

Parameters

Parameters

Results

Results

Results

Results

1 2 3 4 5

EnsembleModel.simulate return EnsembleResults

Figure 5: The flow of data through an ensemble simulation in Magpy. (1) The user
instantiates an EnsembleModel object and calls the EnsembleModel.simulate func-
tion, specifying the number of CPU cores to utilise. (2) The main Python process
spawns a new individual process for each model in the ensemble. (3) The individual
processes each call the Magpy C++ library using their respective model parameters.
(4) The results from the C++ simulation are returned to the individual python process.
(5) When all the processes have finished, the results are collected on the main process
to be analysed and plotted.

as the preferred language for scripting and implementing the auxiliary components of
Magpy. The interface between Python and C++ was written using Cython [22], which
allowed the C++ library functions to be wrapped as Python functions and exposed
as a Python package, while retaining the performance benefits of C++. The Python
package includes additional features for building models and plotting the simulation
results.
The typical workflow for a Magpy experiment consists of running multiple simulations
of the same model in order to generate a distribution of possible trajectories, as in
Figure 3. This motivates an embarrassingly parallel strategy in which each simulation
executes concurrently on a single process, since no communication is required between
the independent runs. Parallelism is implemented in Python using joblib3. A minimum
example of how joblib is used to execute tasks in parallel is shown in Listing 3. In
Magpy, the user creates an ensemble of models (the EnsembleModel object in Listing 1
lines 3-18) and begins the simulation (EnsembleModel.simulate lines 19-20) utilising
the requested number of cores (n jobs). For each model in the ensemble, Magpy
creates a new independent python process containing a copy of the model object. Each
process then simulates its respective model by calling functions in the C++ library
with the model parameters. As many as n jobs simulations may execute concurrently.
Once each simulation finishes, the results are returned from the C++ library to the
individual python process. Once all processes have completed, the results are gathered
back into the python process with which the user was originally interacting. This
architecture is displayed graphically in Figure 5.

3https://pythonhosted.org/joblib/ for the joblib documentation.

UP JORS software Latex paper template version 0.1

Quality control
Magpy has been tested to increase confidence in the correctness of the implementation,
mathematics, and physics. The lowest level of tests, unit tests, assert that individual
functions return the correct answer given a set of fixed arguments. The unit tests are
designed to catch bugs during development and test the installation of the software.
Continuous integration, using CircleCI4, ensures that tests are automatically executed
before changes are committed to the existing code repository on Github. The unit
tests are implemented using GoogleTest5 for C++ functions and pytest6 for Python
functions.
Numerical tests are necessary to confirm the stability and robustness of the numerical
methods. Magpy includes scripts to evaluate the empirical convergence rates of the
SDE solvers and compares them with analytic solutions [23, 3]. The numerical tests
should be used during the development of new or existing solvers.
Finally, Magpy includes a series of Jupyter notebooks7 that present tutorials and ex-
amples, including comparisons of simulation results with theoretical solutions from
alternative models in physics. These comparisons assert that the simulations, under
the appropriate assumptions, correctly approximate the magnetic nanoparticle dynam-
ics. The fundamental benefit of Jupyter notebooks is that they contain documentation,
mathematics, figures, and executable code in a single format. However, this introduces
additional maintenance, the example code in the notebooks must be updated when the
interfaces or structure of the program changes. Therefore, we used the nbval tool8 as
part of our testing practices to validate the consistency of the notebooks. The valida-
tion process asserts that the code examples run without error and that their result is
consistent with the most recent documentation. Developers are expected to validate
all existing notebooks before committing changes to the code base to ensure that they
remain a relevant and executable form of documentation for users.

(2) Availability

Operating system
Available for all Linux based systems. Tested on Ubuntu 16.04 and RedHat 6.3.

Programming language
Python version 3.5 and a C++11/14 compatible compiler (e.g. G++-4.9 and above)

Additional system requirements
A single modern processor and 1GB of RAM is sufficient for basic models. 10MB of
disk space is required for the Magpy source code, and a total of 35MB for the compiled
libraries and interface.

4https://circleci.com/ for more information.
5https://github.com/google/googletest for the GoogleTest repository.
6https://docs.pytest.org/en/latest/ for the pytest documentation.
7Magpy documentation and examples are hosted at http://magpy.readthedocs.io.
8https://github.com/computationalmodelling/nbval for the nbval repository.

UP JORS software Latex paper template version 0.1

Dependencies
g++-4.9, python3, openblas, setuptools, cython, numpy, matplotlib, toolz, joblib,
scipy, transforms3d, pytest, nbval

List of contributors
Oliver W. Laslett, Jonathon Waters, Hans Fangohr, Ondrej Hovorka

Software location:
Archive

Name: Zenodo
Persistent identifier: 10.5281/zenodo.1124942
Licence: 3-Clause BSD
Publisher: Oliver Laslett
Version published: 1.1
Date published: 14/01/18

Code repository

Name: Github
Persistent identifier: https://github.com/owlas/magpy/tree/v1.1

Licence: 3-Clause BSD
Date published: 14/01/18

Language
English

(3) Reuse potential
Magpy was primarily designed for simulating the magnetic dynamics of nanosized par-
ticles. The simulation results may be used to compute heat dissipation, relaxation
rates, and equilibrium states allowing the software to help predict, explain, or other-
wise augment traditional experiments in the laboratory or clinical settings. However,
using numerical simulation also allows the exploration of a range of material geometries
and properties without expensive equipment or physical limits. Magpy was designed
to be accessible to experts and non-experts through the extensive documentation and
included examples.
In addition to its uses in physics, the implementation of the numerical solvers for
stochastic differential equations may be useful beyond the original purpose of Magpy.
The Landau-Lifshitz-Gilbert equation belongs to a class of equations (multi-dimensional,
nonlinear, stochastic, non-commutative, stiff) that are challenging to solve numerically.
Magpy could also be used for teaching concepts in magnetism as the Python interface
will likely be familiar to new students in physics.
A number of additional features remain that have yet to be implemented in Magpy.
In particular, the use of a multiplole expansion method (inspired by Vinamax) would
reduce the time required to compute the interaction fields. It would also be possible
to extend Magpy to simulate atomistic-level dynamics by decomposing each macrospin

REFERENCES UP JORS software Latex paper template version 0.1

into a lattice of atomistic moments and including the exchange interaction term to
the effective field. The rare-events model currently supports a single particle with the
field applied along its anisotropy axis. Allowing arbitrary applied field directions as
well as dipole-dipole interactions between multiple particles would greatly increase the
potential applications of the model.
Contributions are welcomed and encouraged in the form of feature requests, bug re-
ports, and suggestions for new algorithms. All communication should be directed to
the github repository in order to keep a publicly available record of issues, which may
be addressed by the members of the community. Currently, active support is limited
to the lead developer (Oliver Laslett) but we hope that improved support will result
from a growing user base.

Acknowledgements
Many thanks to all members of the Computational Engineering and Design group for
enlightening discussions on research software design. A special thank you to Thomas
Kluyver for his unfathomable depth of knowledge of the Python ecosystem.

Funding statement
The authors gratefully acknowledge financial support from the EPSRC doctoral train-
ing centre grant (EP/G03690X/1).

Competing interests
The authors declare that they have no competing interests.

References
[1] M Lakshmanan. The fascinating world of the Landau–Lifshitz–Gilbert equation:

an overview. Philosophical Transactions of the Royal Society of London A: Math-
ematical, Physical and Engineering Sciences, 369(1939):1280–1300, 2011.

[2] José Luis Garćıa-Palacios and Francisco J Lázaro. Langevin-dynamics study of
the dynamical properties of small magnetic particles. Physical Review B, 58(22):
14937, 1998.

[3] Grigori N Milstein, Yu M Repin, and Michael V Tretyakov. Numerical methods for
stochastic systems preserving symplectic structure. SIAM Journal on Numerical
Analysis, 40(4):1583–1604, 2002.

[4] Hyon Bin Na, In Chan Song, and Taeghwan Hyeon. Inorganic nanoparticles for
MRI contrast agents. Advanced materials, 21(21):2133–2148, 2009.

[5] Beata Chertok, Bradford A Moffat, Allan E David, Faquan Yu, Christian Berge-
mann, Brian D Ross, and Victor C Yang. Iron oxide nanoparticles as a drug
delivery vehicle for MRI monitored magnetic targeting of brain tumors. Bioma-
terials, 29(4):487–496, 2008.

REFERENCES UP JORS software Latex paper template version 0.1

[6] Andreas Jordan, Regina Scholz, Peter Wust, Horst Fähling, and Roland Felix.
Magnetic fluid hyperthermia (mfh): Cancer treatment with ac magnetic field in-
duced excitation of biocompatible superparamagnetic nanoparticles. Journal of
Magnetism and Magnetic Materials, 201(1):413–419, 1999.

[7] Christian Haase and Ulrich Nowak. Role of dipole-dipole interactions for hyper-
thermia heating of magnetic nanoparticle ensembles. Physical Review B, 85(4):
045435, 2012.

[8] William T. Coffey and Yuri P. Kalmykov. Thermal fluctuations of mag-
netic nanoparticles: Fifty years after Brown. Journal of Applied Physics, 112
(12):121301, 2012. doi: http://dx.doi.org/10.1063/1.4754272. URL http://

scitation.aip.org/content/aip/journal/jap/112/12/10.1063/1.4754272.

[9] William H Press. Numerical recipes 3rd edition: The art of scientific computing.
Cambridge university press, 2007.

[10] Jonathan Leliaert, Arne Vansteenkiste, Annelies Coene, Luc Dupré, and Bartel
Van Waeyenberge. Vinamax: a macrospin simulation tool for magnetic nanopar-
ticles. Medical & biological engineering & computing, 53(4):309–317, 2015.

[11] Richard FL Evans, Weijia J Fan, Phanwadee Chureemart, Thomas A Ostler,
Matthew OA Ellis, and Roy W Chantrell. Atomistic spin model simulations of
magnetic nanomaterials. Journal of Physics: Condensed Matter, 26(10):103202,
2014.

[12] Arne Vansteenkiste, Jonathan Leliaert, Mykola Dvornik, Mathias Helsen, Felipe
Garcia-Sanchez, and Bartel Van Waeyenberge. The design and verification of
mumax3. Aip Advances, 4(10):107133, 2014.

[13] Michael J Donahue. Oommf user’s guide, version 1.0. -6376, 1999.

[14] David Cortés-Ortuño, Weiwei Wang, Ryan Pepper, Marc-Antonio Bisotti, Thomas
Kluyver, Mark Vousden, and Hans Fangohr. Fidimag v2.0, 2016. URL https:

//doi.org/10.5281/zenodo.167858.

[15] Thomas Fischbacher, Matteo Franchin, Giuliano Bordignon, and Hans Fangohr.
A systematic approach to multiphysics extensions of finite-element-based micro-
magnetic simulations: Nmag. Magnetics, IEEE Transactions on, 43(6):2896–2898,
2007.

[16] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban,
Dan E Shumaker, and Carol S Woodward. SUNDIALS: Suite of nonlinear and dif-
ferential/algebraic equation solvers. ACM Transactions on Mathematical Software
(TOMS), 31(3):363–396, 2005.

http://scitation.aip.org/content/aip/journal/jap/112/12/10.1063/1.4754272
http://scitation.aip.org/content/aip/journal/jap/112/12/10.1063/1.4754272
ht​tps://doi.org/10.5281/zenodo.167858
ht​tps://doi.org/10.5281/zenodo.167858

REFERENCES UP JORS software Latex paper template version 0.1

[17] Hagen Gilsing and Tony Shardlow. Sdelab: A package for solving stochastic differ-
ential equations in matlab. Journal of Computational and Applied Mathematics,
205(2):1002–1018, 2007.

[18] Marijan Beg, Ryan A Pepper, and Hans Fangohr. User interfaces for computa-
tional science: A domain specific language for oommf embedded in python. AIP
Advances, 7(5):056025, 2017.

[19] Hans Fangohr, Maximilian Albert, and Matteo Franchin. Nmag micromagnetic
simulation Tool-Software engineering lessons learned. In Software Engineering for
Science (SE4Science), IEEE/ACM International Workshop on, pages 1–7. IEEE,
2016.

[20] Anders Logg, Garth N Wells, and Johan Hake. Dolfin: A c++/python finite ele-
ment library. Automated Solution of Differential Equations by the Finite Element
Method, pages 173–225, 2012.

[21] Hans Fangohr. A comparison of C, MATLAB, and Python as teaching languages
in engineering. Computational Science-ICCS 2004, pages 1210–1217, 2004.

[22] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith.
Cython: The best of both worlds. Computing in Science Engineering, 13(2):
31 –39, 2011. ISSN 1521-9615. doi: 10.1109/MCSE.2010.118.

[23] Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Dif-
ferential Equations, volume 23 of Stochastic Modelling and Applied Probability.
Springer-Verlag Berlin Heidelberg, 1992.

Copyright Notice
Authors who publish with this journal agree to the following terms:

Authors retain copyright and grant the journal right of first publication with the work
simultaneously licensed under a Creative Commons Attribution License that allows
others to share the work with an acknowledgement of the work’s authorship and initial
publication in this journal.

Authors are able to enter into separate, additional contractual arrangements for the
non-exclusive distribution of the journal’s published version of the work (e.g., post it
to an institutional repository or publish it in a book), with an acknowledgement of its
initial publication in this journal.

http://creativecommons.org/licenses/by/3.0/

REFERENCES UP JORS software Latex paper template version 0.1

By submitting this paper you agree to the terms of this Copyright Notice, which will
apply to this submission if and when it is published by this journal.

REFERENCES UP JORS software Latex paper template version 0.1

1 import magpy as mp

2

3 chain3_model = mp.Model(

4 radius=[8e-9, 8e-9, 8e-9],

5 anisotropy=[4e3, 4e3, 4e3],

6 anisotropy_axis=[

7 [0., 0., 1.], [0., 0., 1.], [0., 0., 1.]],

8 magnetisation_direction=[

9 [0., 0., -1], [0., 0., -1], [0., 0., -1]],

10 location=[

11 [0., 0., -20e-9], [0., 0., 0.], [0., 0., 20e-9]],

12 magnetisation=400e3,

13 damping=0.1,

14 temperature=300.,

15 field_shape='constant',

16 field_amplitude=30e3)

17

18 chain3_ensemble = mp.EnsembleModel(base_model=chain3_model, N=500)

19 results = ensemble.simulate(

20 time_step=1e-13, end_time=1e-8, max_samples=500, n_jobs=4)

21

22 time = results.time

23 first_run_magnetisation = results.results[0].magnetisation()

24 ensemble_magnetisation = results.ensemble_magnetisation()

Listing 1: Simulating an ensemble of five hundred three-particle chains in Magpy (re-
sults shown in Figure 3). The three-particle chain model is instantiated (lines 3-16)
using the Model object, which is defined by the properties and locations of each par-
ticle in the chain and the applied field. An ensemble of models is created using the
EnsembleModel object (line 18), which simply represents a collection of individual
models and is provided for convenience. The five hundred models are individually sim-
ulated (lines 19-20) and the computational work is distributed across four processes
by setting n jobs=4. The resulting magnetisation is computed for an individual model
(line 23) and the entire ensemble of models (line 24).

REFERENCES UP JORS software Latex paper template version 0.1

1 import magpy as mp

2

3 Hs = [100e2, 0.0, -100e2]

4 models = [

5 mp.DOModel(

6 radius=5e-9, anisotropy=5e4, damping=0.01,

7 magnetisation=400e3, temperature=300,

8 initial_probabilities=[1.0, 0.0], field_amplitude=H)

9 for H in Hs

10]

11 results = [

12 model.simulate(end_time=2e-6, time_step=1e-10, max_samples=1000)

13 for model in models

14]

15 expected_magnetisations = [res.magnetisation() for res in results]

Listing 2: Simulating three rare-events models with different applied field properties
with Magpy (results plotted in Figure 4). The DOModel object, representing the rare-
events model, is defined (lines 3-6) by the particle and applied field properties. Three
identical particles are modelled each with a different value of the constant applied field
amplitude (line 1). Each of the models is simulated (lines 9-12) and the expected
magnetisation of each model is computed (line 13).

REFERENCES UP JORS software Latex paper template version 0.1

1 from joblib import Parallel, delayed

2 import time

3

4 def slow_double(x):

5 time.sleep(1) # 1 second sleep

6 y = 2*x

7 return y

8

9 xs = [2, 6, 12, 24, 40, 72, 126, 240]

10

11 # Serial computation takes approximately 8s

12 ys_serial = [slow_double(x) for x in xs]

13 print(ys_serial)

14 #> [4, 12, 24, 48, 80, 144, 252, 480]

15

16 # Embarrassingly parallel computation takes approximately 2s

17 ys_parallel = Parallel(n_jobs=4)(delayed(slow_double)(x) for x in xs)

18 print(ys_parallel)

19 #> [4, 12, 24, 48, 80, 144, 252, 480]

Listing 3: A minimal example of an embarrassingly parallel computation with joblib.
The function slow double (line 4) doubles a single number and takes approximately
one second. The objective is to evaluate the function with eight different arguments
(line 9). This is achieved in serial with a for loop (line 12) by evaluating the function
for each argument in the list singly, taking approximately eight seconds. However, this
problem is embarrassingly parallel because all evaluations of slow double may occur
concurrently since each function call only depends on its initial argument. Using joblib,
the eight function calls are evaluated on four processes as shown (line 17) by setting
n jobs=4. Two evaluations are distributed to each of the four processes, which execute
concurrently, taking approximately two seconds.

